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Abstract
We compare the vorticity expansion approximation (VEA) with the local
density approximation (LDA) of the current-density functional theory from the
viewpoint of sum rules. The VEA formulae satisfy all sum rules which are
derived from uniform and nonuniform coordinate scaling properties, while the
LDA formulae do not satisfy at least about a third of the sum rules. The validity
of the VEA formula is thus confirmed successfully.

1. Introduction

The current-density functional theory (CDFT) [1, 2] is useful for describing the ground-state
properties of systems such as open-shell atoms and inhomogeneous electronic systems in a
magnetic field. The CDFT has been extended to the relativistic version, relativistic current-
and spin-density functional theory (RCSDFT) [3, 4]. This relativistic version is also useful
especially for f-electron materials where an orbital current is induced from both the strong
spin–orbit interaction and the intra-atomic Coulomb interaction.

In order to perform actual calculations on the basis of such theories, the approximate form
of the exchange–correlation energy functional is indispensable. There are two strategies for
developing the approximate form [5, 6]. One is to start with the coupling-constant expression
of the exchange–correlation energy functional. By using this exact expression, the local density
approximation (LDA) of the CDFT has been proposed similarly to that in the density functional
theory (DFT) [5, 6]. Another strategy is to utilize as constraints exact relations that are satisfied
with the exchange and correlation energy functionals. This strategy has been successfully
used in developing the generalized gradient approximation (GGA) [7, 8] of the DFT. For the
exchange–correlation energy functional of the CDFT as well as that of the DFT, many kinds of
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exact relations have been derived by means of the virial theorem, and uniform and nonuniform
scaling properties [5, 6, 9].

According to the latter strategy, we have recently proposed the vorticity expansion
approximation (VEA) for the exchange and correlation energy functionals [10] of the CDFT.
The VEA formulae are constructed by utilizing exact relations as constraints [10]. Due to
the well-behaved forms, the VEA formulae can well reproduce the exchange and correlation
energies of the homogeneous electron liquid under a uniform magnetic field [10].

In this paper, for the purpose of evaluating the validity of the VEA formulae, we check
whether or not the VEA formulae satisfy other sum rules which are not used in constructing
the VEA formulae. For comparison, the LDA formulae are evaluated by means of sum rules,
similarly to the VEA case.

2. VEA formulae of the exchange and correlation energy functionals of the CDFT

In the CDFT, the electron density ρ(r) and paramagnetic current density jp(r) are chosen as
basic variables. The exchange–correlation energy functional is formally defined as [1, 2]

Exc
[
ρ, jp

] = F
[
ρ, jp

] − Ts
[
ρ, jp

] − U [ρ], (1)

where U [ρ], F[ρ, jp] and Ts[ρ, jp] are the Hartree energy term, the universal functional and
the kinetic energy functional of the reference system, respectively. F[ρ, jp] and Ts[ρ, jp] are
defined by using the constrained-search formulation [11–17]:

F[ρ, jp] = Min
�→(ρ,jp)

〈�| T̂ + Ŵ |�〉 =: 〈
�

[
ρ, jp

]∣∣ T̂ + Ŵ
∣
∣�

[
ρ, jp

]〉
, (2)

Ts[ρ, jp] = Min
�→(ρ,jp)

〈�| T̂ |�〉 =: 〈
�

[
ρ, jp

]∣∣ T̂
∣
∣�

[
ρ, jp

]〉
, (3)

In equation (2), the minimizing is performed among antisymmetric wavefunctions � that yield
the prescribed ρ(r) and jp(r), and �[ρ, jp] means the minimizing wavefunction. Similarly,
the minimizing in equation (3) is done among the single Slater determinants � that yield
the prescribed ρ(r) and jp(r). �[ρ, jp] means the minimizing single Slater determinant.
Substituting equations (2) and (3) into equation (1), we have
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�
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]∣∣ Ŵ
∣
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�
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]∣∣ Ŵ
∣
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[
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]〉 − 〈
�

[
ρ, jp

]∣∣ Ŵ
∣
∣�

[
ρ, jp

]〉

+ 〈
�

[
ρ, jp

]∣∣ T̂
∣
∣�

[
ρ, jp

]〉 − 〈
�

[
ρ, jp

]∣∣ T̂
∣
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[
ρ, jp

]〉
. (4)

Let us define the exchange energy functional Ex [ρ, jp] as the first two terms on the right-hand
side of equation (4), and the correlation energy functional Ec[ρ, jp] as the remaining four terms,
i.e.,

Ex
[
ρ, jp

] := 〈
�

[
ρ, jp

]∣∣ Ŵ
∣
∣�

[
ρ, jp

]〉 − U [ρ], (5)

Ec
[
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] := 〈
�

[
ρ, jp

]∣∣ Ŵ
∣∣�

[
ρ, jp

]〉 − 〈
�

[
ρ, jp

]∣∣ Ŵ
∣∣�

[
ρ, jp

]〉

+ 〈
�

[
ρ, jp

]∣∣ T̂
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[
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]〉 − 〈
�
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∣∣�

[
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]〉
. (6)

These definitions are the same as those previously given by Erhard and Gross [9].
In recent years, we have proposed a practical form of the exchange–correlation energy

functional of the CDFT [10]. Both Ex[ρ, jp] and Ec[ρ, jp] are expanded in terms of the
vorticity of the paramagnetic current density that is defined by

ν(r) := ∇ × {
jp(r)/ρ(r)

}
. (7)

2



J. Phys.: Condens. Matter 19 (2007) 365216 K Higuchi and M Higuchi

Table 1. Comparison of the VEA and the LDA defined in [5]. As regards several sum rules, we
cannot conclude whether they are satisfied by the LDA formulae or not, which are marked by ‘−’.
These ambiguities will be removed by studying more the homogeneous electron liquid under the
weak magnetic field, especially, in the cases of high- and low-density limits [19].

No. Sum rule CDFT-LDA VEA

1 Ex [ρλ, jλp] = λEx [ρ, jp] Yes Yes

2 Ec[ρλ, jλp] � λEc[ρ, jp], λ � 1 Yes Yes

3 Ec[ρλ, jλp] � λEc[ρ, jp], λ � 1 Yes Yes

4 lim
λ→∞ Ec[ρx

λ , j x
pλ] = 0 — Yes

5 lim
λ→∞ λEc[ρx

λ , j x
pλ] = const — Yes

6 lim
λ→0

Ec[ρx
λ , j x

pλ] = 0 Yes Yes

7 lim
λ→0

λ−1 Ec[ρx
λ , j x

pλ] = 0 No Yes

8 lim
λ→0

λ−2 Ec[ρx
λ , j x

pλ] = const No Yes

9 lim
λ→∞ Ec[ρxy

λλ , j xy
pλλ] = 0 — Yes

10 lim
λ→∞ λEc[ρxy

λλ , j xy
pλλ] = const — Yes

11 lim
λ→0

Ec[ρxy
λλ , j xy

pλλ] = 0 Yes Yes

12 lim
λ→0

λ−1 Ec[ρxy
λλ , j xy

pλλ] = 0 No Yes

13 lim
λ→0

λ−2 Ec[ρxy
λλ , j xy

pλλ] = const No Yes

14 lim
λ→∞ Ec[ρxyz

λλλ−1 , j xyz
pλλλ−1 ] = 0 — Yes

15 lim
λ→∞ λEc[ρxyz

λλλ−1 , jxyz
pλλλ−1 ] = 0 — Yes

16 lim
λ→∞ λ2 Ec[ρxyz

λλλ−1 , j xyz
pλλλ−1 ] = const — Yes

17 lim
λ→0

Ec[ρxyz
λλλ−1 , j xyz

pλλλ−1 ] = 0 Yes Yes

18 lim
λ→0

λ−1 Ec[ρxyz
λλλ−1 , j xyz

pλλλ−1 ] = 0 No Yes

19 lim
λ→0

λ−2 Ec[ρxyz
λλλ−1 , j xyz

pλλλ−1 ] = const No Yes

20 lim
λ→∞ Ec[ρz

λ, j z
pλ] = 0 No Yes

21 lim
λ→∞ λEc[ρz

λ, j z
pλ] = const No Yes

22 lim
λ→0

Ec[ρz
λ, j z

pλ] = 0 — Yes

23 lim
λ→0

λ−1 Ec[ρz
λ, j z

pλ] = 0 — Yes

24 lim
λ→0

λ−2 Ec[ρz
λ, j z

pλ] = const — Yes

25 lim
λ→∞ Ec[ρ yz

λλ, j yz
pλλ] = 0 No Yes

26 lim
λ→∞ λEc[ρ yz

λλ, j yz
pλλ] = const No Yes

27 lim
λ→0

Ec[ρ yz
λλ, j yz

pλλ] = 0 — Yes

28 lim
λ→0

λ−1 Ec[ρ yz
λλ, j yz

pλλ] = 0 — Yes

29 lim
λ→0

λ−2 Ec[ρ yz
λλ, j yz

pλλ] = const — Yes

The expansions are taken up to the second order of the vorticity, and the expansion coefficients
are determined by requiring them to satisfy the first 19 sum rules [5, 6, 9] of table 1. Resultant
VEA formula of the exchange energy functional is given by [10]

Ēx [ρ, ν] = Ex [ρ] +
∫

ρ(r) |ν(r)|2 D(ρ)|ρ=ρ(r) dr, (8)

where Ex[ρ] is the exchange energy functional of the conventional DFT. D(ρ) is expressed as
the power of ρ, i.e.,
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Table 2. The values of dimensionless constants in the VEA formulae. The values are determined
by fitting the VEA formulae to the exchange and correlation energies of the homogeneous electron
liquid under the uniform magnetic field [18].

D̄x C̄0 ᾱ δ̄

3.76 × 10−4 −4.67 × 10−4 0.65 1.0 × 10−30

D(ρ) = D̄x h̄2

a3
H εH

ρ−1, (9)

where D̄x is the dimensionless constant, and aH and εH stand for the Bohr radius and Rydberg
constant, respectively.

Also, the VEA formula of the correlation energy functional is given by [10]

Ēc [ρ, ν] = Ec[ρ] +
∫

ρ(r) |ν(r)|2 C(ρ)|ρ=ρ(r) dr, (10)

where Ec[ρ] is the correlation energy functional of the conventional DFT. The expansion
coefficient C(ρ) has been devised so that equation (10) satisfies the first 19 sum rules of table 1
as much as possible. Our best expression of C(ρ) is given by [10]

C(ρ) = C̄0
h̄2

a3
HεH

e−ᾱa3
H ρρ2

(ρ − δ̄/a3
H )3

, (11)

where C̄0, ᾱ and δ̄ are dimensionless constants. If we choose C̄0 < 0, ᾱ > 0 and 0 < δ̄ � a3
Hρ,

then the first 19 sum rules of table 1 are satisfied with equations (10) and (11).
The values of D̄x , C̄0, ᾱ and δ̄ are determined by requiring that the VEA formulae

in the uniform limit reproduce the exchange (εhomo
x ) and correlation energies (εhomo

c ) of the
homogeneous electron liquid under a uniform magnetic field. The VEA formulae in the uniform
limit are in good agreement with the results of Takada and Goto [18]. The resultant values of
D̄x , C̄0, ᾱ and δ̄ are summarized in table 2.

3. Checking the validity of the VEA formulae

As mentioned in the previous section, the VEA formulae in the uniform limit can well
reproduce εhomo

x and εhomo
c . This implies the validity of the VEA formulae. In order to confirm

the validity of the VEA formulae in more detail, we shall compare the VEA formulae with the
LDA formulae from the viewpoint of sum rules satisfied. In addition to 19 sum rules which have
been utilized in constructing the VEA formulae [10], we shall further check whether the VEA
and LDA formulae satisfy other sum rules or not. These investigations are performed under
the assumption that the magnetic field is parallel to the x-direction. The LDA formulae used
here are defined on the basis of the results which have been calculated within the random phase
approximation [19]. The results are summarized in table 1. Note that ambiguities in satisfaction
or not of several sum rules by the LDA formulae (the third column in table 1) are due to the
insufficient knowledge about the exchange and correlation energy of the homogeneous electron
liquid under a uniform magnetic field.

The VEA formulae satisfy all sum rules while the LDA formulae do not satisfy at least a
third of sum rules which are marked ‘no’ in table 1. It is fair to say that the VEA formulae
have well-behaved forms in comparison with the LDA formulae. Note that even though the
VEA formulae satisfy more sum rules than the LDA, the VEA formulae would not always give
quantitatively better results than the LDA formulae. The sum rule does not always guarantee
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to make a good energy functional. However, to say the least of it, the sum rule may fairly well
get rid of the difficulties which lead to nonphysical results, from the approximate functional.
In this sense, it can be expected that the present VEA formulae may lead to more reasonable
results than the LDA.

Finally, we shall give a brief comment on the direction of the magnetic field. If the
magnetic field is parallel to the z-axis, we may obtain different results for the LDA formulae. In
this case, the first three sum rules are satisfied by the LDA formulae similarly to the above case
(x-direction), while the 6th, 11th, 17th sum rules are not satisfied. Instead, the 22nd and 27th
sum rules are satisfied with the LDA formulae. As contrasted with such a direction dependence
of the LDA, the VEA formulae correctly satisfy all sum rules regardless of the direction of the
magnetic field. Such correct behaviour also supports the advantage of the VEA over the LDA.
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